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Contrast sensitivity functions (CSFs) characterize the
sensitivity of the human visual system at different
spatial scales, but little is known as to how contrast
sensitivity for achromatic and chromatic stimuli changes
from a mesopic to a highly photopic range reflecting
outdoor illumination levels. The purpose of our study
was to further characterize the CSF by measuring both
achromatic and chromatic sensitivities for background
luminance levels from 0.02 cd/m2 to 7,000 cd/m2.
Stimuli consisted of Gabor patches of different spatial
frequencies and angular sizes, varying from 0.125 to 6
cpd, which were displayed on a custom high dynamic
range (HDR) display with luminance levels up to 15,000
cd/m2. Contrast sensitivity was measured in three
directions in color space, an achromatic direction, an
isoluminant “red-green” direction, and an S-cone
isolating “yellow-violet” direction, selected to isolate
the luminance, L/M-cone opponent, and S-cone
opponent pathways, respectively, of the early
postreceptoral processing stages. Within each session,
observers were fully adapted to the fixed background
luminance (0.02, 2, 20, 200, 2,000, or 7,000 cd/m2). Our
main finding is that the background luminance has a
differential effect on achromatic contrast sensitivity

compared to chromatic contrast sensitivity. The
achromatic contrast sensitivity increases with higher
background luminance up to 200 cd/m2 and then shows
a sharp decline when background luminance is
increased further. In contrast, the chromatic sensitivity
curves do not show a significant sensitivity drop at
higher luminance levels. We present a computational
luminance-dependent model that predicts the CSF for
achromatic and chromatic stimuli of arbitrary size.

Introduction

Spatial vision refers to the ability to see image
intensity variations across space. Early measurements
of spatial visual sensitivity have focused on spatial
resolution and spatial acuity (e.g., Shlaer, 1937) and
summation of signals across space (Ricco’s law;
Graham & Margaria, 1935). Campbell and Robson
(1968) were the first to use principles of Fourier
analysis to study spatial sensitivity and introduced the
contrast sensitivity function, which is the reciprocal
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of the threshold contrast over a range of spatial
frequencies.

Since the seminal article by Campbell and Robson
(1968), progress has been made in our understanding of
how spatial sensitivity varies with eccentricity (Robson
& Graham, 1981), pattern size (Rovamo et al., 1993;
Noorlander et al., 1980), spatial orientation (Campbell
et al., 1966), and mean luminance level (Mustonen
et al., 1993; Van Nes & Bouman, 1967). The majority
of these studies have focused on contrast sensitivity
for achromatic image variations, and a comprehensive
model for achromatic spatial detection mechanisms has
been proposed by Watson and Ahumada (2005).

The contrast sensitivity function for chromatic
modulations has been studied to a lesser degree,
with some notable exceptions (Green, 1968; Cropper,
1998; Andrews & Pollen, 1979; Granger & Heurtley,
1973; van der Horst & Bouman, 1969; Kim et al.,
2017; McKeefry et al., 2001; Swanson, 1996; Valero
et al., 2004; Lucassen et al., 2018). The most extensive
set of chromatic contrast sensitivity measurements
comes from Mullen (1985) and Anderson et al.
(1991), who have assessed the contrast sensitivity for
isoluminant red-green and S-cone isolating (lime-violet)
gratings with individually adjusted isoluminance
points to isolate chromatic channels and silence the
luminance-driven mechanisms. Sekiguchi et al. (1993)
employed interference fringes to measure chromatic
and luminance contrast sensitivity, thereby eliminating
optical blur in addition to chromatic aberration; their
contrast sensitivity data are in agreement with the
measurements by Anderson et al. (1991).

With the advent of high-dynamic range displays, it
is vital to understand how the visual system operates at
very high and very low luminance levels. For achromatic
contrast modulations, Van Nes and Bouman (1967) and
Mustonen et al. (1993) characterized the dependence
of the contrast sensitivity on light levels up to
5,900 trolands (Van Nes & Bouman, 1967). There
are no corresponding measurements for chromatic
contrast sensitivity. The purpose of our study is to
provide a comprehensive set of measurements and
a computational model of contrast sensitivity for
achromatic and chromatic modulations as a function
of light level, reflecting the contrast sensitivity of
an average (standard) observer. Contrast sensitivity
function (CSF) models reflecting the visual system of
a standard observer afford the generality necessary for
practical applications.

Due to the aforementioned purpose, the current
study approaches the characterization of chromatic
contrast sensitivity slightly differently from Mullen
(1985). Truly isoluminant stimuli are difficult to achieve
even when using a heterochromatic flicker paradigm
(Wagner & Boynton, 1972). There are many possible
sources of luminance intrusion, including interobserver
variations in V(λ) (Gibson & Tyndall, 1923), retinal

illuminance (Ikeda & Shimozono, 1981), chromatic
aberration (Flitcroft, 1989), and the variation of the
isoluminance point across the visual field (Bilodeau &
Faubert, 1997). Therefore, rather than experimentally
controlling for luminance intrusion, we instead allowed
for the possibility that the stimuli are not perfectly
isoluminant for each observer and included luminance
intrusion in our model of chromatic channels. Since
our aim is to provide a model of chromatic contrast
sensitivity for an average (standard) observer that
would be applicable to complex spatio-chromatic
images (e.g., To & Tolhurst, 2019), it is not useful
to optimize stimulus parameters for a small set of
individual observers.

In the main experiment (Experiment 1), we
measured contrast thresholds for three directions in
color space: Stimuli were either modulated along an
achromatic direction, a red-green direction (RG), or an
S-cone-isolating, lime-violet direction (YV). Thresholds
were measured as a function of spatial frequency (0.5,
1, 2, 4, 6 cpd) under steady-state adaptation to low
mesopic (0.02 cd/m2) and high photopic (7,000 cd/m2)
light levels. The subsequent experiments served as
controls or were necessary to formulate a more general
model. In Experiment 2, we tested whether the contrast
sensitivity at medium to high luminance levels could be
affected by incomplete adaptation, by measuring the
contrast sensitivity with the room light on and bright
diffuse lights near the stimuli. In Experiment 3, we
measured the contrast sensitivity for two additional
lower spatial frequencies (0.125 cpd, 0.25 cpd) to
evaluate whether the chromatic contrast sensitivity has
indeed a low-pass shape (Mullen, 1985) or whether,
at sufficiently low spatial frequencies, the contrast
sensitivity drops as it does for achromatic modulations.
In Experiment 4, additional contrast sensitivity data
were collected for two more envelope sizes for each
spatial frequency to assess spatial summation for the
three contrast modulations, which will allow us to
generalize our model predictions from the fixed-cycle
stimuli to arbitrary stimuli. In Experiment 1, we
standardized the width of the Gaussian envelope to
the spatial frequency of the underlying sine wave, so
that we can treat the width of the Gaussian as a fixed
parameter. This is useful for modeling, since we can
then treat the width of the Gaussian as a free parameter
for predicting contrast sensitivity to stimuli of different
sizes.

Experiment 1: Light level and
spatial frequency

In Experiment 1, we tested how contrast sensitivity to
both achromatic and chromatic contrast modulations is
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Figure 1. Left: a photograph of the HDR display in Cambridge. Right: the schematic diagram of the HDR display design. The image from
the DLP is projected on a diffuser and further modulated by an LCD panel with its backlight removed. To improve the light efficiency of
the system, a Fresnel lens with a focal length of 32 cm was introduced next to the diffuser such that the light was directed toward the
eyes of the observer.

dependent on the background light level. We measured
contrast thresholds for Gabor patches at mean
luminances ranging from 0.02 cd/m2 (low mesopic
range) to 7,000 cd/m2 (high photopic range).

Methods

Observers
We recruited five observers from the University of

Cambridge and 16 observers from the University of
Liverpool. Observers provided informed consent prior
to participation, in accordance with the ethical approval
of respective University Ethics Committees. All naive
observers were reimbursed for their time.

Eleven of the observers were naive to the purpose
of the study (five female, 11 male, mean age = 26.8 ±
7.7); the rest were the authors (four female, one male,
mean age = 40.4 ± 12.6). All observers had normal
or corrected-to-normal visual acuity. All observers
had normal color vision, verified using the Cambridge
Color Test for the CRS ViSaGe System (Mollon &
Reffin, 1989) or Ishihara’s Tests for Colour Deficiency,
38-plates edition.

In order to verify that the experimental setups in the
two locations were calibrated to the same standard,
three observers repeated the experiment in both
Cambridge and Liverpool. We found that the data from
these observers were consistent across location and
report only pooled data from these observers.

Apparatus
The stimuli were displayed on two custom-built

high-dynamic-range (HDR) displays: one in Liverpool
(peak luminance: 4,000 cd/m2) and one in Cambridge
(peak luminance: 15,000 cd/m2). As the two displays
were otherwise identical in construction, we describe the
display in Cambridge and flag the differences. The HDR

display consisted of an LCD panel (9.7 in., 2,048-pixel
× 1,536-pixel iPad 3/4 retina display; product code:
LG LP097QX1) and a DLP (Digital Light Processing)
projector (Optoma X600 in Cambridge, Acer P1276
in Liverpool; both 1,024 × 768 pixels). The backlight
of the LCD was removed and the DLP acted as
the replacement backlight (Seetzen et al., 2004); see
the schematic diagram (Figure 1). Because we could
modulate both the pixels on the LCD and on the DLP,
the maximum contrast we could achieve was a product
of the contrast of each display; given 1,000:1 contrast
of the LCD and 1,000:1 contrast of the DLP, the
maximum contrast of our display was 1,000,000:1. The
image on such a display is formed by factorizing the
target image, in a linear color space, into the DLP and
LCD components, such that their product forms the
desired image. The factorization was performed using
the original method from Seetzen et al. (2004).

Several steps were taken to improve the light
efficiency and therefore the brightness of the display.
The DLP had its color wheel removed, increasing
its brightness by a factor of 3. The color wheel was
unnecessary as the LCD panel was responsible for
forming a color image. A Fresnel lens with the focal
length of 32 cm was introduced behind the LCD panel
to ensure that most of the light was directed toward the
observer.

The display was calibrated and driven by custom-
made software, written in MATLAB and relying on
Psychtoolbox and MATLAB OpenGL extensions
(Kleiner et al., 2007). The calibration involved
displaying a series of grids consisting of dots,
individually on the LCD and DLP; photographing
them with a DSLR camera (Canon 550D); and finding
both homographic and mesh-based transformations
between DLP and LCD pixel coordinates. This step
ensured an accurate alignment between LCD and DLP
pixels. To compensate for spatial nonuniformity, a
photograph of the display showing a uniform field was
taken and used to compensate pixel values on the DLP.
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Figure 2. Spectral power distributions of the HDR displays.

Because the resolution of the DLP was lower than that
of the LCD, and because the DLP image sharpness was
further reduced by a diffuser, it was necessary to model
a point-spread function (PSF) of the DLP and to use
it when factorizing target images into LCD and DLP
components. The PSF was modeled by taking multiple
exposures of the grid of dots, reconstructing from
them an HDR image, and fitting a Gaussian function
approximating the shape of the PSF.

The color calibration was performed by measuring
display’s spectral emission, individually for LCD and
DLP, using a spectroradiometer (JETI Specbos 1211
in Cambridge, PhotoResearch PR-670 in Liverpool).
CIE 2006 cone fundamentals (CIE, 2006) were used to
calculate the L-, M-, and S-cone responses as follows:

L= 0.689903
∫

λ

l2(λ)E (λ) dλ ,

M= 0.348322
∫

λ

m2(λ)E (λ) dλ ,

S= 0.0371597
∫

λ

s2(λ)E (λ) dλ , (1)

where l2, m2, and s2 are 2◦ cone fundamentals1 and
E is the measured spectral radiance emitted from the
display. The l2 and m2 spectra were scaled such that the
sum corresponded to luminance and the sensitivity of
the S-cones was set so that s2(λ)/V(λ) peaks at 1 (CIE,
2006). All our calculations were based on photopic
luminance, including the lowest luminance levels of
0.02 cd/m2, which was at the lower end of the mesopic
range (Barbur & Stockman, 2010).

The responses were fitted to the gain-offset-gamma
display model (Berns, 1996) for the LCD and a
1-dimensional look-up table was used for the DLP
(since it was achromatic after removing the color
wheel); see Figure 2 for the spectral emission of the two
HDR displays.

Both LCD and DLP were natively driven by 8-bit
signals. To prevent banding artifacts from quantization,
we used spatio-temporal dithering for LCD and
bit-stealing for DLP to extend the effective bit-depth

Figure 3. Color space with the three modulation directions used
in the experiments.

to 10-bits per color channel. The display driver was
written in the OpenGL shading language to factorize
and render images in real-time.

Stimuli
The stimuli were Gabor patches created by

multiplying a sinusoidal grating with a Gaussian
envelope (Figure 4). The Gabor were odd-symmetric,
that is, the phase was adjusted so that the zero-crossing
was exactly in the center of the stimulus. Each grating
was modulated along one of the three cardinal color
axes in Derrington-Krauskopf-Lennie (DKL) space
(Figure 3): an achromatic, red-green, or yellow-violet
direction (Derrington et al., 1984). Modulations in this
color space can either be described by the stimulus
properties reflecting the appearance (achromatic,
red-green, yellow-violet) or by the chromatic properties
of a set of hypothesized mechanisms that are isolated
by these stimulus modulations (Brainard, 1996).

In terms of the stimulus properties, changes along
the achromatic direction resulted in all three cone
classes being modulated such that the cone contrasts are
identical; modulations along the red-green axis leave the
excitation of the S-cones constant, and the excitation
of the L- and M-cones covaries as to keep their sum
constant. Along the third, the yellow-violet direction,
only the S-cones are modulated. These modulations
in color space are designed to isolate a set of three
hypothesized mechanisms: a luminance mechanism
(RL +M ) and two cone-opponent color mechanisms
(RL −M , RS −(L +M )).

The chromatic properties are described in the matrix
below (Equation 2). The first mechanism, (RL +M ), is
the luminance mechanism, which adds up the L- and
M-cone responses (which are normalized such that the
sum corresponds to V(λ)). The second mechanism,
(RL −M ), is an L/M opponent mechanism and takes the
differences between the weighted incremental L- and
M-cone signals. The third mechanism, (RS −(L +M )),
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Figure 4. Fixed-cycles stimuli used in Experiments 1 to 3. The width of the Gaussian envelope was set to be half of the wavelength, σ
= (0.5/f)◦.

is another cone-opponent mechanism taking the
difference between the incremental S-cone signal and
the sum of the incremental L- and M-cones.

[
�RL +M
�RL −M

�RS −(L +M )

]
=

⎡
⎢⎢⎢⎢⎣

1 1 0

1 − L0

M0
0

−1 −1
L0 + M0

S0

⎤
⎥⎥⎥⎥⎦

×
[

�L
�M
�S

]
(2)

where L0, M0, and S0 are the cone responses
corresponding to the gray background. Stimuli were
modulated around this neutral gray (white) background
of a D65 metamer (CIE 1931 x, y = 0.3127, 0.3290).

The inverse of the above matrix defines the stimulus
modulations in LMS space that are required to achieve
selective stimulation of the hypothesized mechanisms
and is shown below (Equation 3). For example,
to isolate the luminance mechanism (RL +M ), we
set the mechanism output vector to [1 0 0], which
results in changes in all three cone signals. To isolate
the cone-opponent mechanism (RL −M ), we set the
response vector to [0 1 0], which results in equal L- and
M-cone modulations but of opposite sign. Finally, to
isolate the third opponent mechanism (RS −(L +M ) ), the
response vector is set to [0 0 1], resulting only in S-cone
modulations. The matrix that maps the mechanisms,
output into the LMS modulations depends on the
chromaticity of the background. Equation 4 shows
the matrix used in our experiment. The desired LMS

modulations can then be converted to linearized RGB
(see the Acknowledgments for links to the MATLAB
files). For a tutorial on how to implement the DKL
space, the reader should consult Brainard (1996).

[
�L
�M
�S

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L0

L0 + M0

M0

L0 + M0
0

M0

L0 + M0
− M0

L0 + M0
0

S0

L0 + M0
0

S0

L0 + M0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×
[

�RL +M
�RL −M

�RS −(L +M )

]
(3)

[
�L
�M
�S

]
=

[0.6981 0.3019 0
0.3019 −0.3019 0
0.0198 0 0.0198

]

×
[

�RL +M
�RL −M

�RS −(L +M )

]
(4)

To achieve comparable response units in these three
mechanisms, the responses could be scaled such that
the response for each mechanism is unity for a stimulus
of unit pooled cone contrast. However, all these scaling
procedures are to a large extent arbitrary (Capilla
et al., 1998). We therefore used the length in cone
contrast space (Equation 5) as a measure of stimulus
contrast since it allows comparison across different
color directions (Cole et al., 1993). The rationale
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for measuring contrast sensitivity along these three
modulation directions in color space was twofold.
First, these modulations were likely to preferentially
stimulate early postreceptoral mechanisms. While
it was unlikely that cortical mechanisms could be
isolated with these color modulations (Shapley &
Hawken, 2011), it still allowed us to characterize the
contrast sensitivity for salient and, to some degree,
independent mechanisms. Second, it constituted a
device-independent definition of the chromatic stimulus
modulations and allowed comparisons with previously
obtained CSF measurements.

The standard deviation of the Gaussian envelope
was set to be half of the wavelength (σ = 0.5 · 1

f [deg]).
The Gabors were of spatial frequencies 0.5, 1, 2, 4,
or 6 cycles per degree of visual angle (cpd). Thus,
the ± 2σ region of the Gabor patches subtended
4◦× 4◦, 2◦× 2◦, 1◦× 1◦, 0.5◦× 0.5◦, and 0.33◦× 0.33◦,
respectively. Using these Gabor stimuli with a fixed
number of visible cycles allowed us to treat the width
of the Gaussian as a fixed parameter. This was useful
for modeling, since we could then treat the width of the
Gaussian envelope as a free parameter for predicting
contrast sensitivity to stimuli of different sizes.

Procedure
The experiment was grouped intomultiple sessions by

mean luminance level to ensure that observers were fully
adapted to the display luminance during data collection.
The mean luminance was one of 0.02, 0.2, 2, 20, 200,
2,000, or 7,000 cd/m2; assuming Watson’s (2012) unified
pupillary model, these luminances were equivalent
to 0.86, 7.83, 62.87, 416.80, 2,335.85, 13,245.57, and
36,560.55 trolands, respectively. For sessions at 0.02
and 0.2 cd/m2, observers adapted to the darkness for 5
to 10 minutes prior to starting the study and remained
in the experiment room until the end of the session.
Sessions at 7,000 cd/m2 were conducted exclusively in
Cambridge.

At the beginning of each session, we obtained a
preliminary estimate of the contrast threshold using a
method of adjustment task. This was used as an initial
estimate for the QUEST procedure.

The main task was a 4AFC (four-alternive forced
choice) detection task, in which observers indicated
which quadrant of the display contained a Gabor
patch. The stimulus was positioned 3.77◦ from the
center of the display: upper left, upper right, lower
left, or lower right. The stimulus was displayed until
observer response. Between trials, a mask was presented
over the 4AFC stimulus region for 500 ms to neutralize
adaptation to the previously seen Gabor. To create the
mask, we sampled a matrix of random numbers from
U ( − 1, 1) per color channel, then blurred the resulting
image with a Gaussian kernel (σ = 4 px).

The stimulus contrast was determined using a
QUEST procedure (Watson & Pelli, 1983). There was
one QUEST staircase per spatial frequency and color
modulation combination, for a total of 21 staircases per
session. Each staircase lasted for a minimum of 25 and
a maximum of 35 trials.

Within a session, observers saw Gabor patches of
different spatial frequencies and color modulation
interleaved in a random order. Since the Gabor
orientation was not a stimulus dimension of interest,
we randomly chose a vertical or horizontal orientation
for each trial. Observers had no information as to the
spatial frequency, color modulation, or orientation of
the target Gabor patch.

Each session lasted approximately 40 to 50 minutes.
Some observers chose to omit sessions at 7,000 cd/m2,
as the high luminance could be uncomfortable to view
for an extended period of time.

Observers were seated 91 cm from the HDR display
such that the display subtended 12.5◦× 9.4◦. The
effective sampling rate of the LCD was 165 pixels
per visual degree. The head position was fixed with
a chin-rest to the horizontal and vertical center of
the display. Observers were allowed to move their
eyes in order to examine stimuli. All viewing was
binocular. Our rationale for unlimited viewing time
and free scanning of the display was driven by two
considerations. First, since our aim was to provide a
model of contrast sensitivity applicable to everyday
viewing conditions, unlimited viewing time seemed to
be the most appropriate choice. Second, in parallel to
the experiments reported here, we have been collecting
data from observers falling into an older age group
(60+ years old). For these observers, it is difficult to
obtain robust data with very brief stimulus durations.

Results

For each condition, we computed the maximum
likelihood estimate of the contrast sensitivity. Each
threshold estimate is typically based on between 25
and 35 trials. Threshold contrast is defined as the
normalized length in cone contrast space (Equation 5):

Ct = 1√
3

√(
�L
L0

)2

+
(

�M
M0

)2

+
(

�S
S0

)2

Ct = Threshold cone contrast
�L, �M, �S = Incremental L,M,S-cone

× absorptions
L0,M0,S0 = L,M,S absorptions of the

× display background (5)
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Figure 5. Results of Experiment 1. Contrast sensitivity as a function of luminance for the three color directions: achromatic, red-green,
and yellow-violet.

The advantage of this contrast measure is that it allows
device-independent comparisons between different
directions in color space and is identical to the standard
Michelson contrast for achromatic modulations.

Figure 5 shows the contrast sensitivities as a function
of frequency for light levels ranging from 0.02 cd/m2

to 7,000 cd/m2. The achromatic modulations resulted
in a classic band-pass response for medium to high
luminance levels (from 2 cd/m2 onward), with a peak
response at medium spatial frequencies (ranging from
1 to 2 cpd). The gradual change from a low-pass
shape at very low luminance levels (0.02 cd/m2) to the
typical band-pass shape in higher luminance levels is
similar to the results of Van Nes and Bouman (1967).
Red-green and yellow-violet modulations, on the other
hand, resulted in a low-pass contrast sensitivity curves
at all light levels, with the peak sensitivity occurring
at the lowest spatial frequency measured (0.5 cpd).
Sensitivity was higher for the red-green stimuli than
for the achromatic modulation when expressed as the
inverse of the cone contrast, which is consistent with
Kim et al. (2017).

When contrast sensitivity data were replotted as a
function of light level (Figure 6), sensitivity was not
a monotonic function of luminance for achromatic
modulations; rather, contrast sensitivity was lowest
at 0.02 cd/m2 and rose steadily with increasing mean
luminance until it reached a peak at 20 to 200 cd/m2

for low to medium frequencies, then decreased again
beyond 200 cd/m2. This luminance dependence
interacted with spatial frequency, such that the overall
maximum sensitivity occurred between 20 to 200 cd/m2

for 1 to 2 cpd where observers could reliably detect

a Gabor patch of 2% to 3% contrast. For red-green
and yellow-violet modulations, contrast sensitivity
rose steadily as a function of luminance, reaching a
maximum at around 200 cd/m2. Only for the lowest
frequency, a decrease in peak sensitivity was observed.

In Figure 7, thresholds are plotted as a function of
retinal illuminance (trolands). For chromatic stimuli
(red-green and yellow-violet), contrast thresholds
were independent of the retinal illuminance beyond
about 2,000 trolands, hence consistent with Weber
law, whereas for achromatic stimuli (L+M), thresholds
rose again for very high light levels. This failure of
Weber-law behavior in the high photopic range has
not been reported by Van Nes and Bouman (1967),
probably due to the fact that that they only investigated
contrast sensitivity up to 5,900 trolands and our data
show that Weber law only fails at retinal illuminances
above 10,000 trolands.

For all three modulation directions, log threshold
contrast decreased approximately linearly with log
retinal illuminance for low and intermediate light
levels, with slopes systematically a bit less than −0.5,
(DeVries-Rose law; Rose, 1948; De Vries, 1943).
Mean slopes were −0.42 and −0.36 for red-green and
yellow-violet, respectively (Table 1) and independent of
spatial frequency. For achromatic thresholds, the slopes
were frequency dependent and increased with spatial
frequency (Table 1), consistent with Mustonen et al.
(1993).

The transition from the DeVries-Rose to Weber
behavior was independent of spatial frequency for
chromatic modulations (Figure 7); for achromatic
stimuli, on the other hand, the inflection point shifted
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Figure 6. Contrast sensitivity replotted from Figure 5 as a function of luminance.

Figure 7. Logarithmic threshold cone contrast sensitivity as a function of log retinal illuminance.

Spatial frequency (cpd)

Modulation 0.5 1 2 4 6 Mean

Achromatic −0.31259 −0.37537 −0.42091 −0.43269 −0.4546 −0.39923
Red-green −0.43583 −0.42582 −0.46969 −0.38018 −0.40045 −0.42239
Yellow-violet −0.37897 −0.37221 −0.34183 −0.35667 −0.35517 −0.36097

Table 1. Slopes of log threshold contrast versus log retinal illuminance (trolands) in linear range.
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to higher retinal illuminances when spatial frequency
was increased. Díez-Ajenjo and Capilla (2010) and
Valero et al. (2004) reported a similar difference between
chromatic and achromatic gratings: For achromatic
gratings, the transition fromDeVries-Rose toWeber-law
behavior was dependent on spatial frequency and
occurred between 1 and 2 cd/m2 for the lowest spatial
frequency measured (0.5 cpd), consistent with our
findings. For chromatic modulations, threshold contrast
decreased approximately linearly with background
luminance in log-log space, without a clear transition
point up to 100 cd/m2. Valero et al. (2004) only
investigated luminances up to 100 cd/m2, which is well
below our maximum luminance range (7,000 cd/m2);
in our experiments (Figure 7), the transition point
occurred at around 200 cd/m2 for chromatic stimuli.

The failure of Weber law behavior for very high
luminances may be due to incomplete adaptation
to the display background for luminances greater
than 200 cd/m2. We investigate this possibility in
Experiment 2, presented in the following section.

Experiment 2: Control for
incomplete adaptation

The purpose of Experiment 2 was to determine
whether incomplete adaptation to the mean luminance
level affected the contrast sensitivity measurements at
high luminances (> 200 cd/m2). Though luminance
adaptation is largely local and typically limited to a
0.5◦-radius neighborhood (Vangorp et al., 2015), the
adaptation level can nonetheless be influenced by more
distant parts of the visual field. As Experiment 1 was
conducted in a dark room and the display subtended
only a small portion of the visual field, we considered
the possibility that the dark surroundings prevented
observers from becoming fully adapted to the high
luminance of the display.

Our hypothesis was that such incomplete adaptation
was responsible for the drop in sensitivity that we
observed at luminance levels above 200 cd/m2. To test
this hypothesis, we measured contrast sensitivities in
bright surroundings. We kept the room light on and
placed additional light sources around the display,
in order to reduce the difference between the mean
luminance of the display and of the region surrounding
the display.

Methods

Contrast sensitivity was measured at 7,000 cd/m2.
Four observers (three female, one male, mean age
= 29.0 ± 8.2) participated; two were authors. The

stimuli and the apparatus were identical to those in
Experiment 1.

In addition to the HDR display, we placed two
photographer’s softboxes near the display, with
the goal of increasing the luminance of the region
surrounding the HDR display as uniformly as possible.
Each softbox was fitted with five 5,500K CFL bulbs
and enclosed with a white fabric diffuser. From the
observer’s perspective, one softbox was directly above
the display and one was directly to the right. Due to
space restrictions, we did not place any to the observer’s
left. The softboxes added 1,000 lux of light as measured
from the observer’s viewing position with a handheld
digital light meter.

Results

For the stimulus conditions tested, we did not find
any systematic differences in contrast sensitivity when
observers were in a dark room or in a bright room with
high ambient light levels (Figure 8). This suggests that
incomplete adaptation alone cannot explain the drop in
sensitivity at the luminance levels above 200 cd/m2.

Experiment 3: Low spatial
frequencies

In Experiments 1 and 2, contrast sensitivity for the
red-green and yellow-violet modulations was low-pass
in shape, that is, the peak sensitivity occurred at the
lowest spatial frequency measured. In Experiment 3,
we examined whether chromatic contrast sensitivity
measurements at extremely low spatial frequencies
would reveal a bandpass shape as observed for
achromatic modulations. We therefore tested additional
low frequencies ranging from 0.125 cpd to 6 cpd, at
three luminance levels: 0.02, 200, and 7,000 cd/m2, for
red-green and lime-violet stimuli.

Methods

Five observers (two male, three female, mean age =
27.2 ± 4.3) from Cambridge and Liverpool participated
in this experiment. One observer was naive; the rest were
authors or had previously participated in Experiments 1
or 2. Two observers participated in the full set of spatial
frequency conditions; the remaining three participated
only in the three lowest spatial frequency conditions.

All stimulus parameters were as described in
Experiment 1, but thresholds were only measured for
the two chromatic directions. For the 0.125 cpd, 0.25
cpd, and 0.5 cpd conditions, observers were seated
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Figure 8. Contrast sensitivity measures in dark (dark symbols) and bright (bright symbols) surroundings. In the dark surround
condition, only the HDR display emitted light (7,000 cd/m2). No systematic differences were found between these two conditions.

Figure 9. Chromatic contrast sensitivity extended to lower
spatial frequencies from 0.125 cpd to 6 cpd.

at 45.5 cm, such that the HDR display subtended
24.8◦× 18.7◦ and could show up to four 9.0◦× 9.0◦
Gabor patches at a time. Observers did not see a sharp
boundary at the border of the 9◦× 9◦ region, since the
experiment was conducted near the observers’ contrast
detection threshold.

Results

We did not find a systematic reduction in contrast
sensitivity at the very low frequency (0.125 cpd)
for the low and intermediate (0.02 and 20 cd/m2)
luminance levels (Figure 9). For the highest luminances
(7,000 cd/m2), there was some evidence that the
chromatic contrast sensitivity drops off as the
achromatic sensitivity does. However, these differences
are within measurement error, and our experiments do
not provide any strong evidence against the low-pass
characteristics of the chromatic contrast sensitivity.

Experiment 4: Effect of stimulus size

The contrast sensitivity for periodic stimuli is known
to depend on the number of cycles displayed (Hoekstra
et al., 1974). Gratings with fewer cycles result in higher
contrast thresholds, suggesting summation across cycles
and/or spatial extent (Howell & Hess, 1978) until a
critical summation area has been reached (Piper, 1903).
Effect of stimulus area and number of cycles has been
studied both in the fovea and the periphery, primarily
for achromatic gratings (Manahilov et al., 2001). Studies
using chromatic stimuli reported subthreshold spatial
summation to be similar for achromatic and red-green
gratings (Sekiguchi et al., 1993) but show a different
dependence on eccentricity (Mullen, 1991) and larger
integration areas for S-cone isolating gratings (Vassilev
et al., 2000). The purpose of this additional experiment
was to enable us to predict contrast sensitivity for
stimuli of different sizes from our fixed-cycles data.

Methods

In Experiment 1, the Gaussian envelope size was
equal to half wavelength, where wavelength is the
inverse of spatial frequency. For the current experiment,
we introduced twomore envelope sizes equivalent to one
and two wavelengths, respectively. This manipulation
allowed us to investigate spatial summation for
each spatial frequency since contrast sensitivity was
measured for three different envelope sizes. This
experiment was conducted at 20 cd/m2 and only with
a subset of the observers of Experiment 1, namely, 11
observers from Cambridge and Liverpool (four male,
seven female, mean age = 30.7 ± 11.9). The procedure
and apparatus were identical to Experiment 1.
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Figure 10. Results of Experiment 4: Each line represents the contrast sensitivity function for a series of stimuli with different number
of cycles and consequently different stimuli sizes. The size of the Gaussian envelope was fixed to 0.5, 1, and 2 times the wavelength
(the inverse of spatial frequency).

Results

Contrast sensitivity increased with stimulus size
(Figure 10). Due to display size restrictions, not all
spatial frequencies could be measured at all three
envelope sizes. However, the available data suggest that
an increase in envelope size causes a fixed increase
in sensitivity in log-log space. In Figure 11, contrast
thresholds are replotted as a function of area for three
different frequencies (2, 4, 6 cpd) with slopes in log-log
space varying from −0.29 to −0.47. Slopes of −0.5 are
consistent with Piper’s law (Luntinen et al., 1995) and
can be modeled as a single-filter contrast energy model
(Manahilov et al., 2001); slopes in the region from
−0.25 to −0.5 reflect probability summation between
multiple filters or nonlinear summation mechanisms
(Meese & Summers, 2007). We return to the dependency
on stimulus size in the modeling section.

Modeling

Our goal was to derive a spatio-chromatic contrast
sensitivity function that could interpolate and
extrapolate the collected data within an allowable
range. We constructed a set of nested models, with
each successive model being more restrictive and with
fewer free parameters. In Model 1 (“spatio-chromatic
contrast sensitivity function”), the CSF was fitted
separately for each color direction and each luminance
level (each panel in Figure 12 is fitted separately).
Model 2 (including “luminance intrusion”) restricts
the fits by assuming that the CSF for chromatic
stimuli is a mixture of a purely chromatic CSF and a

luminance CSF for high spatial frequencies. In Model 3,
a functional relationship between the model parameters
and the adapting light level (“CSF as a function of
adapting light level”) was introduced.

Subsequently, contrast sensitivity measurements for
different envelope sizes were used to generalize the
model predictions from fixed-cycles stimuli to stimuli
of arbitrary sizes (“CSF as the function of the stimulus
size”) and the extended model was used to predict
previously published contrast sensitivity data (Mantiuk
et al., 2011; Kim et al., 2013; Wuerger et al., 2002).

Spatio-chromatic contrast sensitivity function

As a function of spatial frequency, the achromatic
CSF is band-pass and the chromatic CSFs have a
low-pass shape (Figures 5 and 9). We modeled this
behavior using a truncated log-parabola (Ahumada
& Peterson, 1992; Rohaly & Owsley, 1993; Watson &
Ahumada, 2005; Kim et al., 2017):

log10 S( f ;Smax, fmax, b)

= log10 Smax −
(
log10 f − log10 fmax

0.5·2b
)2

(6a)

S′( f ;Smax, fmax, b, t)

=
⎧⎨
⎩
Smax

t
, if f < fmax and S( f ;Smax, fmax, b) <

Smax

t
S( f ) otherwise

(6b)

Equation 6 has four parameters: peak frequency fmax,
peak sensitivity Smax, bandwidth b, and an optional
truncation parameter t. t describes the low-pass
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Figure 11. Linear decrease in log contrast with increase in log area of the stimulus.

behavior in sensitivity functions where the sensitivity
saturates to a constant value for spatial frequencies
below the peak frequency.

We first model all CSFs as log-parabola without the
truncation parameter and then model the chromatic
CSFs as truncated log-parabolas. The three color
channels and the seven luminance levels are modeled
independent of each other. We fitted the average data
for each of the 21 conditions (seven luminances and
three color channels) with either three (fmax,Smax,b) or
four (fmax,Smax,b,t) free parameters.

We made the implicit assumption that the contrast
sensitivity of the chromatic stimulus modulations
(red-green, yellow-violet) is determined by the
sensitivity of two putative chromatic mechanisms.
While chromatic mechanisms favor low temporal and

low spatial frequencies, it is unlikely that chromatic
contrast variations at medium to high frequencies (4
and 6 cpd) are only seen by chromatic mechanisms (due
to luminance artifacts; see Introduction for details).
Based on the data from Mullen (1985), we fitted the
nominally isoluminant chromatic data using only the
spatial frequencies ≤ 2 cpd.

The results are in Figure 12 and Table 2. The
log-parabola model fits the achromatic data well, but
a truncated log-parabola model is needed to explain
the chromatic data, especially at the lower frequencies,
which were measured only at 20 cd/m2. The chromatic
data show a small dip in sensitivity at the extreme
luminance levels of 0.02 cd/m2 and 7,000 cd/m2. At this
stage, we cannot confirm whether the dip reflects a real
effect or measurement error.
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Figure 12. The results of fitting parabolic CSF models to the data, individually for each luminance level (columns) and color direction
(rows). Note that the frequencies below 0.5 cpd were measured only at 20 cd/m2 and for the chromatic color channels.

Luminance ( cd/m2)

Parameter Channel 0.02 0.2 2 20 200 2,000 7,000

fmax Achromatic 0.6839 0.6371 1.023 1.372 1.624 1.689 1.540
Red-green 0.5704 0.2596 0.4536 0.3094 0.4422 0.5547 0.5501
Yellow-violet 0.2702 0.4407 0.3543 0.1679 0.3344 0.4783 0.3263

Smax Achromatic 7.825 17.63 37.45 46.46 50.89 36.44 25.80
Red-green 15.73 53.93 142.6 347.8 508.9 417.4 388.6
Yellow-violet 3.845 5.536 17.16 54.57 64.42 53.69 57.93

b Achromatic 0.7809 0.9883 0.903 0.9082 0.9475 1.064 1.003
Red-green 0.8471 1.153 0.9108 1.17 1.123 1.015 1.055
Yellow-violet 1.159 1.156 1.155 1.356 1.126 1.041 1.271

t Red-green 0.0339 0.000 0.000 0.0132 0.000 0.0024 0.000
Yellow-violet 0.0576 0.000 0.000 0.000 0.000 0.000 0.1048

Table 2. Parameters for log-parabola fit with truncation parameter for chromatic channels.

Luminance intrusion

The CSF model in Figure 12 predicted lower
sensitivities for the chromatic modulations (R-G, Y-V)
at frequencies greater than 4 cpd than what we found in
the experiments. We hypothesized that this was caused
by the intrusion of a luminance mechanism at higher
spatial frequencies (Flitcroft, 1989), possibly because
we did not make the stimuli isoluminant for each
observer using heterochromatic flicker photometry.
We modeled this luminance intrusion by predicting
chromatic sensitivity as the combination of responses
of both luminance and chromatic mechanisms.

The probability that a stimulus defined by color
contrast will be detected by achromatic or chromatic

channels can be modeled as probability summation:

PAch+Chr = 1 − (1 − P(αC SAch)) (1 − P(C SChr))
(7)

where PAch + Chr is the probability of detecting stimulus
of the contrast C, SAch is the sensitivity of the
achromatic channel, and SChr is the sensitivity of
one of the chromatic channels (either red-green or
yellow-violet). α is the portion of the original contrast
that is detected by the luminance mechanism. Note that
the productC SAch gives the perceptually “normalized”
contrast that is equal to 1 at the detection threshold.
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The function P(c) is the psychometric function that can
be expressed as

P(c) = 1 − exp(τ cβ ) , (8)

where β controls the slope of the psychometric
function and τ controls the probability at the detection
threshold. Since the thresholds were estimated from the
4AFC data for P = 0.81, we set τ to ln (0.81). If we
introduce the psychometric function to Equation 7, we
get

PAch+Chr = 1 − exp
(
τ (αC SAch)β )

)
exp

(
τ (C SChr)β

)
(9)

= 1 − exp
(
τ Cβ (αβ Sβ

Ach + Sβ

Chr)
)

(10)

If we introduce the psychometric function on the left
side of the equation, we get

1 − exp(τ Cβ Sβ

Ach+Chr)

= 1 − exp
(
τ Cβ (αβ Sβ

Ach + Sβ

Chr)
)
(11)

SAch+Chr =
(
αβ Sβ

Ach + Sβ

Chr)
)1/β

(12)

Therefore, the sensitivity for the combined response
of the chromatic and achromatic channels can be
modeled as a weighted Minkowski summation of the
sensitivities of the individual mechanisms.

The achromatic sensitivity is modeled using the
log-parabola model from Equation 6:

SAch = S( f ; f (Ach)
max ,S(Ach)

max , b(Ach)) (13)

where f (Ach)
max , S(Ach)

max , and b(Ach) are the peak frequency,
peak sensitivity, and bandwidth of the achromatic
channel, at a given luminance level. The sensitivity
to the two chromatic directions is modeled as the
Minkowski summation of both chromatic and
achromatic sensitivity:

SAch+RG =
(
α

β

RGS
β

Ach( f ; f (Ach)
max ,S(Ach)

max , b(Ach))

+S′β
RG( f ; f (RG)

max ,S(RG)
max , b(RG), t(RG))

)1/β
(14)

SAch+YV =
(
α

β

YVS
β

Ach( f ; f (Ach)
max ,S(Ach)

max , b(Ach))

+S′β
YV ( f ; f (YV)

max ,S(YV)
max , b(YV), t(YV))

)1/β
(15)

where f (RG)
max , S(RG)

max , b(RG), t(RG), f (YV)
max , S(YV)

max , b(YV),
and t(YV) are the parameters of the two chromatic
mechanisms, fitted independently for each luminance
level. The parameters αRG and αYV control the amount
of luminance intrusion. At each luminance level, we
fit all three sensitivity functions, 13 parameters in
total (three peak frequencies, three peak sensitivities,
three bandwidths, two summation coefficients, two
achromatic channel gains). The optimization was
performed for the data of all 20 observers individually
as well as the average CSF for all the observers. The
fitting results for the average CSF data are presented
in Figure 13. The log-parabola fits (truncated in cases
of chromatic channels) are shown as dotted lines in
Figure 13. The model assumes that the achromatic
stimuli are picked up solely by a luminance channel
(upper row) and can be completely specified by
Equation 13. For chromatic stimuli, we assumed that
a luminance channel also contributes to the overall
contrast sensitivity. In the second and third rows in
Figure 13, the dotted lines represent the contributing
luminance channel, which adds to the chromatic
sensitivity via probability summation (Equation 7) and
determines the response at higher spatial frequencies.
The effect is more evident for the lime-violet stimuli.

The fitted parameters for the model are listed in
Table 3. The values for αRG are much higher than
for αYV, which is due to the sensitivity values for
red-green being higher than for yellow-violet or
achromatic channels. This difference in sensitivity is
partly due to the way contrast is defined (Equation 5).
A quick investigation of the table reveals that many
of the parameters are related to the logarithmic value
of luminance. In the next section, we model such
a functional relationship so that the model can be
generalized to any luminance level within the measured
range.

Contrast sensitivity as a function of mean
luminance

Figure 14 shows the relationship between the fitted
CSF parameters and the logarithmic luminance. The
plots clearly show that some parameters, such as fmax,
Smax, and the inverse of α, are strongly related to
log-luminance, while the relation of b is less clear given
our data. To be able to generalize our model to different
luminance levels (between 0.02 cd/m2 and 7,000 cd/m2),
we fit functions for the CSF parameters that show
strong relationship with luminance and find constant
values for the parameter b, as listed in the equations
below:

fmax =
⎧⎨
⎩
1.663φ(log l; 3.045, 2.834), Achromatic
0.06069 log l + 0.3394, Red-green
0.4095 Yellow-violet
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Figure 13. Channel summation model with 11 free parameters; see Table 3 for fitted parameters. Including luminance intrusion
improves the model prediction for chromatic channels at higher frequencies. Filled dots represent the measured data for contrast
sensitivities. Solid lines are the resultant model predictions while the dotted lines in cases of chromatic contrast sensitivities
represent the pure chromatic and the luminance intrusion components.

Luminance ( cd/m2)

Parameter Channel 0.02 0.2 2 20 200 2,000 7,000

fmax Achromatic 0.5052 0.6368 1.016 1.349 1.652 1.701 1.547
Red-green 0.4735 0.2907 0.3889 0.3690 0.5028 0.5506 0.5622
Yellow-violet 0.2463 0.5571 0.5226 0.2410 0.3849 0.4831 0.4314

Smax Achromatic 7.138 17.63 37.29 41.43 47.29 36.02 25.16
Red-green 14.44 45.85 128.3 335.4 501.6 415.6 387.3
Yellow-violet 3.595 4.973 13.60 52.53 63.39 54.09 51.43

b Achromatic 1.158 0.9886 0.9086 1.02 1.025 1.08 1.031
Red-green 0.9825 1.221 1.201 1.052 1.016 1.023 1.038
Yellow-violet 1.055 1.216 1.274 1.067 0.9617 0.9754 1.029

α Red-green 2.858 1.089 1.315 1.037 1.527 2.750 3.120
Yellow-violet 0.3480 0.2646 0.2672 0.2443 0.3513 0.5305 0.8683

Table 3. Parameters for channel summation fit.

log10 Smax =
⎧⎨
⎩
1.705φ(log l; 1.867, 3.142), Achromatic
2.715φ(log l; 2.663, 3.364), Red-green
1.843φ(log l; 2.696, 2.608), Yellow-violet

(16a, b)

b =
⎧⎨
⎩
1.036 Achromatic
1.085 Red-green
1.097 Yellow-violet

1
α

=
{
0.9323φ(log l; 0.6986, 1.998), Red-green
4.099φ(log l; 0.3328, 2.336), Yellow-violet

(16c, d)

where φ is a Gaussian function: φ(x; μ, σ ) =
exp

(−(x − μ)2

2 σ 2

)
.

The summation coefficient β was fixed to 3.5.
Figure 15 shows model predictions for the achromatic
(Equation 13) and two chromatic (Equations 14 and
15) components of the model when the parameters
are predicted by the functions and constants from
Equation 16 Yellow-violet. Despite the approximations
made to predict luminance-dependent parameters, the
model provides good fit to the data.

The three models and their root-mean-squared-error
(RMSE) are compared in Table 4. Model 1 was fitted
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Figure 14. The relationship between the fitted CSF parameters and luminance. The orange dots indicate parameters fitted for
individual observers and the black dots the parameters fitted for the average observer. The dashed lines show the functions we fitted
to the parameters from average observer data to build a luminance-dependent CSF. The adjusted R2 values of the fits to the average
observer are reported. b (in octaves) for all channels and fmax for the lime-violet channel did not fit well to a simple function and were
thus fixed to the median value across luminance levels. Left: Log-parabola parameters; peak frequency fmax, peak sensitivity Smax, and
bandwidth b. Right: Achromatic channel gain α used in Minkowski summation.

Figure 15. Model predictions including luminance intrusion and parameters as a function of the light level, based on Equations 13
to 16.
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Model No. Model description Summary Equations Mean RMSE

1 Log-parabola Optimization with three free
parameters for Ach: f (Ach)max ,
S(Ach)max , b(Ach); four free
parameters for RG: f (RG)max , S(RG)max ,
b(RG), t(RG); and four free
parameters for YV: f (YV )max , S(YV )max ,
b(YV), t(YV)

Equation 6 fitted separately
for each color and
luminance

Achromatic 0.0463
Red-green 0.0347
Yellow-violet 0.0529

2 Model 1 + luminance
intrusion

Optimization with 13 free
parameters: f (Ach)max , S(Ach)max ,
b(Ach), f (RG)max , S(RG)max , b(RG), f (YV )max ,
S(YV )max , b(YV), αRG, αYV, βRG, βYV

and two fixed parameters:
t(RG), t(YV)

Equations 13 – 15 fitted
simultaneously for all
colors, independently for
each luminance

Achromatic 0.0701
Red-green 0.1155
Yellow-violet 0.1256

3 Models 1 + 2 +
luminance
dependence

Coefficients in Equation 16
optimized with three free
parameters (Gaussian) and
two free parameters (linear)

Equations 13 – 15 with
parameters from
Equation 16

Achromatic 0.1458
Red-green 0.1998
Yellow-violet 0.2029

Table 4. Summary of nested models.

individually for each measured luminance level and
color direction. Model 2 was fitted for each luminance
level but jointly for all color directions. Model 3 was
fitted for seven luminance-dependent parameters and
can generalize predictions to any arbitrary luminance
level at the cost of higher RMSE.

Contrast sensitivity as a function of stimulus
size

When measuring stimuli of different frequencies, we
fixed the number of cycles. This made the stimulus size
become smaller as frequency increased. We had decided
upon this approach in order to collect more applicable
data in most applications, it is more important to
know the exact threshold of a small pattern of high
frequency rather than a large field of a high-frequency
sine grating. But this choice also made our data harder
to compare with other measurements, which were
mostly done for stimuli of fixed size. In this section, we
describe a model that can generalize our predictions to
stimuli of arbitrary size and frequency so that model
predictions can be compared with other data sets.

Rovamo et al. (1993) modeled spatial integration
as a function that increases with the stimulus area
and saturates after reaching a critical area. The
key observation they made was that the increase in
sensitivity is proportional to the square root of the
product of grating area and the squared frequency. We
follow their model but use the log-parabola sensitivity
function rather than the OTF (Optical Transfer

Function) used in the original paper:

SA( f , a;Smax, fmax, b, a0, f0)

= S( f ;Smax, fmax, b)·
√

a f 2

a0 + a f0 + a f 2
, (17)

where S(f) is the log-parabola model from Equation 6,
f is the spatial frequency in cycles per degree, and a is
the area in deg2. For our stimuli, which were smoothly
modulated by Gaussian envelopes, we approximate
a with π · σ 2, the area of a disk of the same radius
as the standard deviation of the Gaussian envelope.
ac and f0 are the two parameters of the stimulus size
model. We used the same equation but with different
parameters for each color direction. We modeled the
sensitivity using the OTF model from Rovamo et al.
(1993, Equation 25) but found that it does not account
for the drop in sensitivity at low frequencies and in our
data.

Ideally, we would like to fit all five parameters of
the model, but we found our data to be insufficient for
that. Therefore, instead, we use the spatial integration
parameters from the original article for achromatic
sensitivity: a0 = 114 and f0 = 0.65. For the two
chromatic sensitivities, we set a0 to 40 and f0 was kept
the same as for the achromatic sensitivity. More data for
large-size chromatic gratings would need to be collected
to fully establish the values of these coefficients. As
before, the data were fitted to the average observer data
but only for chromatic frequencies up to 2 cpd. The
model was fitted to the 20 cd/m2 data, which contained
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Figure 16. Contrast sensitivity predictions for fixed-cycles stimuli, compared to the results of Experiment 4. Each row represents a
separate color direction. Each column is plotted for a different stimulus size, determined as a fraction of the wavelength. Higher
frequency data points for chromatic channels are not included in the fitting.

Parameters

Channel Smax fmax b

Achromatic 447.5 1.105 0.6764
Red-green 2780 0.1321 1.832
Yellow-violet 555.7 0.04399 2.397

Table 5. Area-dependent parameters of log-parabola at
20 cd/m2.

the variation in stimulus size (Experiment 4). The
parameters of the model are presented in Table 5.

The fits to the data from Experiment 4 are shown
in Figures 16 and 17. The model from Equation 17
accounts reasonably well for the size of both achromatic
and chromatic stimuli. However, the predictions are less
accurate at higher frequencies for the two chromatic
channels. This is to be expected as we did not intend
to fit these data points, which would require modeling
luminance intrusion.

To use our model to predict data sets measured at
different luminance levels, we extend the model to
include the previously derived light-level dependency.
Figure 18 shows the data from Mantiuk et al. (2011),

where contrast sensitivity was measured at different
luminance levels for stimuli of different extents. For a
fixed spatial frequency, the sensitivity curve is simply
shifted upward in log-log space, suggesting that there is
little interaction between the effect of light level and the
effect of stimulus size. Therefore, contrast sensitivity
can be simply modeled:

SAL( f , l, a) = SA( f , a) · SL( f , l )
SL( f , 20)

(18)

where SL is luminance-dependent chromatic/achromatic
CSF from the previous section (Equations 13–15) and
SA is the area-dependent CSF from Equation 17. The
SL(f, 20) in the denominator accounts for the fact that
SA was fitted to the data measured at 20 cd/m2.

Comparison with other data sets

In the previous sections, we showed that a relatively
simple model can predict contrast sensitivity variation
due to frequency, stimulus size, and adapting luminance
level, both for chromatic and achromatic gratings,
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Figure 17. Contrast sensitivity predictions as a function of stimulus size (σ of the Gaussian envelope), compared with the results of
Experiment 4. Each row shows predictions for a separate color direction. Each column is plotted for a different spatial frequency.

Figure 18. Achromatic contrast sensitivity at different luminance
levels, as a function of stimulus size. FromMantiuk et al. (2011).

as measured in our experiments. In this section, we
demonstrate that the same model can generalize and
predict data from other experiments. We selected data
sets that contained variability in luminance levels
and/or included both chromatic and achromatic stimuli.

First we use the model from Equation 18 to predict
the data from the ColorFest study (Wuerger et al.,
2002). It should be noted that the ColorFest study
used stimuli of fixed size, and stimuli were temporally
modulated (Gaussian modulation with a standard
deviation of 0.125 s). The sensitivity in the ColorFest

data is uniformly, across all three color directions,
higher by a factor of 0.3 log10 units. To obtain
comparable sensitivity values, we reduced the sensitivity
of the original data by this amount, which resulted
in reasonably good fits (Figure 19). The difference in
overall sensitivity could be explained by the differences
in experimental procedures: While ColorFest data were
collected sequentially for each stimulus variation so that
the same pattern was presented in consecutive 2AFC
trials, in our 4AFC procedure, we randomly selected
a stimulus of a different frequency, color direction, or
orientation in each trial.

Figure 19 shows the original data together with the
model predictions. Predictions for that data are shown
as solid lines (labelled “fixed size”). In addition to that,
we show as dashed lines the predictions for the stimuli
with the fixed number of cycles (and varying size),
similar to the stimuli used in our experiments (labeled
“fixed cycles”). The model from Equation 18 was used
for both curves.

Finally, we use the model to predict the data from the
measurements of achromatic and chromatic gratings at
luminance levels varying from 0.002 cd/m2 to 200 cd/m2

from Kim et al. (2013). Since the experimental
procedure was the same as in Wuerger et al. (2002) and
different from the experiments reported in the current
article, we reduced the contrast sensitivity of the data
by the same amount of 0.3 log10 units. The predictions
for achromatic gratings are shown in Figure 20 and

Downloaded from jov.arvojournals.org on 09/28/2020



Journal of Vision (2020) 20(4):23, 1–26 Wuerger et al. 20

Figure 19. Comparison of our model with the ColorFest data set from Wuerger et al. (2002). The data are well explained by the
continuous lines, showing the predictions for fixed-size stimuli, which were used in the original experiment.

Figure 20. Comparison of our model predictions with the achromatic contrast sensitivity measurements from Mantiuk et al. (2011).
Solid lines represent the same stimuli as used for the measurements.

for chromatic gratings in Figure 21. We use the same
notation as before: solid lines for fixed-size stimuli used
in Kim et al. (2013) experiments and dashed line for
the fixed-cycles stimuli used in our experiment. The
predictions of the model (solid lines) for achromatic
gratings are close to the data except for the two lowest
frequencies. This could be both due to the limitation
of the simple log-parabola model we use and the lack
of data for low frequencies and achromatic gratings.
The predictions for chromatic gratings (Figure 21) are
reasonably accurate for the red-green color direction
but slightly higher than the measurements for the
yellow-violet color direction. We could not determine
the cause of that difference.

Discussion

Spatial contrast sensitivity is one of the most basic
measures of visual performance: It determines the
minimum contrast required for observers to detect

spatial patterns at different spatial scales. Spatial CSFs
have applications in clinical settings as well as in
optimizing display technologies based on the known
limitations of the human visual system. For that reason,
CSFs have been studied extensively since the seminal
article by Campbell and Robson (1968). Most of these
studies have focused on contrast sensitivity at modest
photopic light levels (usually ranging from about 10 to
50 cd/m2) and a comprehensive model for achromatic
spatial detection mechanisms has been proposed
(Watson & Ahumada, 2005).

In the natural environment, our visual system needs
to operate over a large dynamic range, from starlight
to bright sunlight. This is achieved by light adaptation
within the retina, which ensures a useful dynamic range
in the cone photoreceptor system (for a review, see
Barbur & Stockman, 2010). Van Nes and Bouman
(1967) measured spatial contrast sensitivity over a
wide range of retinal illuminances (from 0.0009 to
5,900 trolands) and observed that contrast sensitivity
increases steadily with ambient illumination, up
to about 900 trolands, where the sensitivity seems
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Figure 21. Comparison of our model predictions with chromatic contrast sensitivity measurements from Kim et al. (2013). Solid lines
represent the same stimuli as used for the measurements.

Figure 22. Summary of our model for spatio-chromatic contrast sensitivity at multiple luminance levels.

to saturate, reflecting light adaptation in the cone
receptors. Second, contrast sensitivity for low spatial
frequencies saturates earlier (at around 0.09 trolands)
than for higher spatial frequencies, probably reflecting
a decrease in spatial integration with increasing light
level.

Broadly speaking, our results from Experiment
1 are consistent with Van Nes and Bouman (1967)
but extend these findings in two important aspects.
First, we measured the CSFs not only for achromatic
stimulus modulations but also for chromatic variations
(red-green, yellow-violet). Second, since we were
able to measure the CSFs at higher light levels than
was previously possible (0.86 to 36,000 trolands
reflecting outdoor light levels), we could probe at which
retinal illuminance the CSF saturates. We find the
same pattern of results, that is, achromatic contrast

sensitivity is steadily increasing with increasing light
level (Figure 22). However, in contrast to the findings
by Van Nes and Bouman (1967), for comparable spatial
frequencies, the sensitivity seems to reach its peak
somewhere between 2,000 and 3,000 trolands and
then decreases at even higher illumination levels (cf.
Figure 7), consistent with recent findings by Bierings
et al. (2019). For chromatic stimulus modulations,
the contrast sensitivity seems to reach its peak at
about 2,000 trolands and then saturates, broadly
consistent with a Weber-law behavior, and previous
measurements using interference fringes (Sekiguchi
et al., 1993). There is some suggestion in the chromatic
data that contrast thresholds are also increasing
with increasing light levels, but the inflection point
is at higher light levels than for the achromatic data
(cf. Figure 7).
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We can only speculate on the cause of Weber law
failure at high photopic light levels and whether this
decrease in sensitivity is related to bleaching or pigment
depletion. Experiment 2 was designed to test whether
incomplete adaptation could play a role, but our data
do not support this explanation (Figure 8). The larger
sensitivity loss in the achromatic compared to the
chromatic pathways at high retinal illuminance levels is
consistent with the idea that a sensitivity loss at the cone
level has a more pronounced effect on the achromatic
pathway (due to summing L- and M-cone outputs)
compared to the chromatic pathways where differences
of cone outputs are computed.

Further developments of the contrast
sensitivity model

Most of our measurements (Experiment 1) were
based on fixed-cycles as opposed to fixed-size stimuli,
the former being preferable since fixed-cycles stimuli
are more likely to reflect the summation behavior
of the bandpass spatial-frequency channels in the
human visual system. To predict contrast sensitivity
for stimuli of arbitrary size, we collected additional
data with stimuli of different extents at one particular
luminance level (20 cd/m2; Experiment 4). Adapting
the model by Rovamo et al. (1993) allowed us to fit
the size-varying data for both the achromatic and
chromatic modulations but also to empirically test the
size-dependent model by predicting previously collected
data sets (Figure 19). To generalize the size-dependent
model to arbitrary illumination levels, we made
use of existing size-dependent contrast sensitivity
measurements obtained at low mesopic and photopic
light levels (Figure 18). For this luminance range (0.02
to 150 cd/m2) and size range (0.15 to 1.5 deg), the
effect of size on contrast sensitivity is independent of
the luminance level and can be modeled by a vertical
shift in log-log space. The extended CSF model was
tested by predicting achromatic CS data (Figure 20;
Mantiuk et al., 2011) and chromatic data (Figure 21;
Kim et al., 2013). Low and behold, the predictions
are acceptable in particular when considering the
different experimental methods and observer sample.
Achromatic and red-green Contrast Sensitivity (CS)
data are always better predicted by the size-dependent
model, whereas the fixed-cycles predictions are slightly
superior for the yellow-violet CS data. We have
currently no solid explanation for this difference, but it
may be due to possible light-level dependent differences
in spatial integration mechanisms for red-green and
yellow-violet modulations.

Finally, a model applicable to arbitrary spatio-
chromatic images or natural scenes will also need
to characterize the summation across the chromatic

and luminance channels at detection threshold and
how summation is modulated by retinal illuminance
and stimulus size. While we have measured the CS
for achromatic and chromatic stimuli in isolation, we
have allowed for luminance intrusion in the detection
of the nominally isoluminant chromatic contrast
variations. The role of luminance artifacts in the
detection of the nominally isoluminant chromatic
stimuli is most apparent in the S-cone insolating
gratings at medium to high luminance levels for
frequencies beyond 2 cpd (Figure 13). We have
modeled this interaction by assuming probability
summation between the luminance and chromatic
channel (Equation 7). Summation across luminance
and chromatic channels and between chromatic
channels needs to be further investigated by using
more diagnostic contrast variations, that is, stimulus
variations that are modulated in intermediate directions
in threshold space.

Low-pass shape of the chromatic contrast
sensitivity function

Experiment 3 was designed to further probe the
low-pass shape of the chromatic CSF by measuring
thresholds at additional low frequencies (0.125, 0.25
cpd) for the very low mesopic (0.02 cd/m2) and high
photopic illumination levels (7,000 cd/m2). We find
no convincing evidence for a drop in sensitivity at the
lowest frequency, hence confirming the low-pass shape
of the chromatic CSF, consistent with Mullen (1985).

CS is a measure of performance at threshold.
Models relating detection thresholds to suprathreshold
appearance have been proposed with limited success,
most notably the perceived-contrast model by
Kulikowski (1976), which assumes that perceived
contrast is related linearly to physical contrast once
detection threshold has been subtracted. More recently,
Shapley et al. (2019) have argued that, for chromatic
stimuli, detection and suprathreshold appearance are
mediated by different mechanisms drawing on distinct
neuronal populations (single-opponent nonoriented vs.
double-opponent orientation-tuned neurons): Contrast
sensitivity at threshold is likely to be mediated by
single-opponent neurons with a spatially low-pass
characteristic, whereas suprathreshold appearance
draws on double-opponent neurons that are sensitive
to edges. If it is indeed the case that suprathreshold
chromatic mechanisms do not exhibit the same low-pass
shape as seen in the chromatic CSF, spatio-chromatic
appearance models predicting perceptual attributes
such as perceived contrast, colorfulness, and sharpness
based on detection performance are unlikely to succeed.
Double-opponent neurons encode medium spatial
frequencies for both achromatic and isoluminant
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red-green stimuli and may be the neural substrate for the
commensurate performance and contrast dependence
for orientation discrimination (Wuerger & Morgan,
1999) and blur discrimination (Wuerger et al., 2001) for
suprathreshold achromatic and red-green gratings.

What the eyes see best

The motive in asking what stimulus the eyes see
best is that it reveals the spatio-chromatic receptive
field structure of the visual neurons that detect
that stimulus. Watson et al. (1983) searched a large
parameter space and concluded that, for achromatic
sinusoidal modulations presented on a high-luminance
background (340 cd/m2), the optimal spatial frequency
was at 6 cpd and could be detected at a threshold
contrast of 1.44%. Chaparro et al. (1993) generalized
their study by including chromatic and achromatic
stimuli of various stimulus sizes and durations,
presented on a bright yellow background (3,000
trolands). The optimal duration and stimulus size
were greater for the chromatic spots compared to the
achromatic ones, consistent with greater temporal and
spatial summation. However, even for the nonoptimal
parameter settings, the threshold contrasts for
chromatic variations were consistently lower (by a
factor of 5–9) than for achromatic spots. The lowest
threshold contrast (defined as cone contrast; see
Equation 1) was 0.7% for chromatic stimuli and 3% for
achromatic variations. Our measurements (cf. Figure 7)
confirm the superior sensitivity to chromatic contrast
variations. The lowest threshold contrast (0.2% cone
contrast) is reached at 2,000 trolands for a low spatial
frequency (0.5 cpd) chromatic stimulus; for achromatic
variations, the best detection performance (lowest
threshold: 2%) is also achieved at 2,000 trolands but
at a medium spatial frequency (2 cpd). The superior
sensitivity to chromatic over achromatic variations
(by a factor of 10 in our experiment) is consistent
with the prevalence of retinal parvocellular neurons,
which are L/M cone-opponent. It is worth noting
that the cone contrast measure used to compare
chromatic and achromatic variations does not reflect
the contrast variations found in natural scenes (Burton
& Moorhead, 1987; Párraga et al., 1998); the high
chromatic sensitivity of the visual system might rather
compensate for the low chromatic contrasts typically
occurring in our natural environment (Chaparro et al.,
1993).

Summary and conclusions

Spatial contrast sensitivity measurements are
commonly used to characterize the sensitivity of the

human visual system at different spatial scales. We
have extended existing measurements of contrast
sensitivity to cover light levels ranging from low
mesopic (0.02 cd/m2) to high photopic (7,000 cd/m2)
levels and, crucially, measured sensitivity as a function
of light level in all three directions of color space,
an achromatic direction and two chromatic ones
(red-green, yellow-violet).

All our measurements were performed under
steady-state adaptation to a particular light level. A
notable feature of these extended contrast sensitivity
measurements is that the adapting light level has a
differential effect on the chromatic and achromatic
contrast sensitivity in several important aspects: (a)
We extended the contrast sensitivity measurements
by Van Nes et al. (1967) and demonstrated that the
achromatic contrast sensitivity does not saturate at
200 cd/m2, but it decreases again at higher light levels
(Figure 22). (b) The light level at which Weber-law
behavior was observed was frequency dependent for
achromatic stimuli (2 cd/m2 for 0.5 cpd; 200 cd/m2 for
6 cpd), whereas for chromatic sensitivity, we observed
the transition to Weber law to occur at about 200 cd/m2

at all spatial frequencies (Figure 7). (c) We extended the
chromatic contrast sensitivity measurements of Mullen
(1985) to very low and high light levels and showed that
chromatic sensitivity saturates at about 200 cd/m2 for
spatial frequencies above 1 cpd.

We used these contrast sensitivity measurements,
in conjunction with supplementary measurements
on spatial summation in both the chromatic and
achromatic domain, to derive a computational CSF
model that predicts spatial contrast sensitivity for
ambient light levels ranging from low mesopic and
to high photopic levels. Our CSF model reflects the
visual system of an average (standard) observer,
hence affording the generality necessary for practical
applications in display technology as well as providing
comparative data for clinical investigations.

Keywords: contrast sensitivity functions, color
vision, luminance, high light level, mesopic, photopic,
isoluminance, spatial vision, chromatic, achromatic, cone
adaptation, light adaptation, HDR
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