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Abstract—Achieving truthful reproduction of color is a well-
known problem for printing applications. In this paper, we
evaluate different methods for camera color calibration, within
the scope of a moving image acquisition system. The acquisition
device consists of a RGB camera and two fixed tungsten lamps.
Our goal is to determine the most robust end-to-end framework
given the acquisition conditions. We tested some color mapping
methods commonly mentioned in the literature and made mod-
ifications to our specific needs. Our modified 3D lookup table
(LUT) based method performs the best in the given conditions
with future possibilities of hybrid LUTs combining the best
performing aspects of different types of LUTs.

Index Terms—color calibration, color correction, color imag-
ing, camera calibration

I. INTRODUCTION

For print quality inspection, obtaining accurate color is
essential. However the acquired camera responses are not
a direct depiction of the objects reflectance values. In a
typical RGB camera it is a function of the source illuminance
(including effects such as specular reflection), objects surface
reflectance, and the camera response function [1]. Apart from
the environmental factors, camera parameters such as exposure
settings (aperture, shutter speed, etc.) also influence the camera
response making it non-linear with respect to input radiometric
values. Additional non-linearities are introduced during the
camera post-processing step. Therefore, in our experiments
we will use the raw images to keep the response values
proportional to the recorded intensities.

Moreover, we need the color measured from the camera
to represent the human visual system response. But since the
real world camera spectral sensitivity functions are not linear
transformations of human cone spectral sensitivities (i.e. do
no satisfy Luther conditions) [2], it is not possible to directly
extract the equivalent color as seen by the human eye from
the camera’s response.

Color calibration is essentially the process of finding the
transformation function that converts the device-dependent
responses to a standard device-independent color space. In
our case, we require it to be the CIE LAB color space.
The goal is to find a mapping function, that will convert
the camera RGB response (under fixed conditions) to its
corresponding L*a*b* triplet. The mapping function could

either be a direct conversion between device RGB and L*a*b
or it could use an intermediate color space such as XYZ to
relate the two color spaces. Color correction is the process
of applying the aforementioned transformation function to the
camera response to convert it into the equivalent target color
space.

Some additional constraints specific to our application are
the small working distance, and non-uniform illumination. The
goal of the application is to create an accurate representation
of a flat object. We will develop a complete pipeline from
acquisition to color correction and provide an overview of
different color mapping algorithms modified to fit our appli-
cation. In Section II, we will discuss some of the previously
done researches on color correction methods. In Section III,
the overview of our equipment and the description of pre-
processing, color calibration and correction steps is given.
Sections IV and V present and summarize the findings and
give recommendations for future research.

II. RELATED WORK

Extensive research has been aimed at solving the problem
of truthful color acquisition by cameras. Some of the most
relevant studies are discussed here.

Least square approximation (LSA) methods aim to minimize
the residual error between the ground truth colorimetric values
and the predicted colorimetric values when transformed with
a transformation matrix. Depending on the desired mapping
inputs and outputs, and the mapping function, there can be
several variations of LSA methods. Some of the commonly
used LSA methods are linear, polynomial, and root-polynomial
approximations.

Linear mapping is one of the earliest used , and the simplest
LSA algorithm [3]. As depicted in Fig. 1, the relationship be-
tween RGB camera response and the XYZ device-independent
is roughly linear (see R-X, G-Y, and B-Z plots) and can be
represented mathematically as:

Y = XCt (1)

where:
Y = Matrix of device-independent colorimetric values
X = Matrix of any function of camera response
C = Transformation matrix; coefficients of linear solution



Fig. 1: Relationship between corresponding RGB and XYZ
tristimulus values

A 3x3 transformation matrix between the RGB and XYZ
values can be calculated by least square approximation or
minimizing the residual norm of Eq. 1. The closed-form
solution of the following relationship can be obtained by
Moore-Penrose pseudo-inverse method:

min
c
||XCt − Y ||2 (2)

Because the linear camera responses are directly propor-
tional to the scene radiance/device exposure, the linearly
mapped transformation is also robust to irradiance/exposure
changes. Linear mapping although simple is not always a
correct representation of the relationship between the two cor-
responding especially in low chromaticity regions. To obtain
a more suitable mapping, the transformation can be modelled
as a higher degree polynomial between XYZ tristimulus
values and function of camera RGB values. This takes into
account the inter-channel relationships as well. If the exposure
and environmental conditions are kept constant, polynomial
regression works fairly well [4]. However, care must be taken
when using higher-degree polynomial models as it could result
in over-fitting. Moreover, the transformation is no longer
exposure invariant as the matrix X in Eq. 1 is no longer a
direct representation of the irradiance/exposure.

In order to preserve the exposure invariance property and
map a higher degree transformation, root polynomial terms
are added to the simple linear matrix X in Eq. 1. Examples
of second order root polynomial terms are

√
RG,

√
GB, and√

BR. Since the degree of the added polynomial terms is kept
as 1, they are still proportional to changes in irradiance or
exposure [5].

Extended Linear Color Correction (ExLCC) approach used
by Finlayson and Johnson [6] exploits the fact that the
CIELAB coordinates are converted from CIEXYZ indepen-
dently from each other. For example the lightness L* is only
dependent on Y, a* is dependent on X and Y, and b* is
dependent on Y and Z. Hence, instead of aiming to minimize
the overall color difference E00, it is better to individually

Fig. 2: Relationship between corresponding RGB and XYZ
tristimulus values

minimize the difference in each parameter. Thus, instead of
calculating one generalized transformation matrix, this method
calculates three transformation matrices which independently
calculate L*, a* and b* values.

Hue-plane Preserving Color Correction (HPCC) takes into
account the non-uniformity of perceptual color spaces. The
color sensitivity of the human visual system is different for
different parts of the gamut [7] and so it can be more useful
to calculate different mapping transforms dependent on the
position of the color in its corresponding gamut. Instead of
mapping the absolute camera responses, the chromaticities or
weighted RGB values are used to segment the color spaces in
areas of similar hues as shown in Fig. 2. Separate transforma-
tions for each hue plane are calculated with additional optional
constraints of white-point and boundary color constancy [8].

Multidimensional Lookup Table (MLUT) based methods
also exploit the non-linearities of the color spaces. Instead of a
single generalized transformation matrix for the whole gamut,
it is divided into a grid of representative color coordinates.
Measurements are made for a sparse set of selected grid
points and the rest of the points are estimated using non-linear
interpolation techniques [9].

III. EXPERIMENT

A. Equipment

a) Camera: The camera is mounted perpendicular to the
object table at a height of 16.1 cm. We opted for the UI-
1490LE-C-HQ, a lightweight 10.55 megapixels USB 2.0 cam-
era by iDS. It has a CMOS sensor from ON Semiconductor
with a resolution of 3840 x 2748 pixels and a rolling shutter.
The lens has a focal length of 3.5 mm and f-stop range from
F2.4∼14. With such small working distance, distortions such
as vignetting, and uneven spatial response of the sensor are
also more pronounced. Hence, they need to be compensated
in the pre-processing steps.

b) Illumination: Two tungsten lamps are placed on either
side of the object table, positioned to minimize the shad-
ows and provide an approximately homogeneous illumination.



Flat-field correction is applied to compensate the remaining
illuminant non-uniformity. Another problem is the specular
reflection due to change in illuminant geometry across the
object table. To compensate, the polarizer’s angle is adjusted
to minimize the specular reflection at different positions on
the object table.

c) Calibration Target: Since our application is geared
towards printed surfaces, an IT8/7.3 CMYK calibration target
is used to create the calibration dataset. The printable image
of the calibration target is shown in Fig. 3. The target has 928
color patches covering the entire Pointer’s gamut [10].

d) Spectrophotometer: Spectral measurements are taken
using the X-Rite i1Pro spectrophotometer. The L*a*b* values
are computed for a 2◦ observer under D65 illuminant.

B. Image Processing Pipeline
All the image processing and color calibration/correction

steps are performed using MATLAB. In this section, the
image processing steps applied before color characterization
are described briefly. These steps are common for calibration
target images as well as any image which is to be color
corrected. The flowchart of the processing pipeline is depicted
in Fig. 4.

1) Demosaicing: Since the captured images are 8-bit raw
images, demosaicing must be performed to convert them
into 24-bit RGB images. The default MATLAB demosaic
function is based on linear interpolation and produces visible
artefacts, especially in large areas of uniform color, such as
the flat-field images. Instead color plane interpolation using
alternating projections method [11] was used which albeit
slower produced no visible artefacts.

2) Flat-field correction: Flat-field correction is necessary
to correct inter-frame (illuminant differences between images
acquired at different positions on the object table) as well
as intra-frame (illuminant differences between different areas
of the same image) non-uniformity. Thermal noise and dark
current noise is also removed during this process. The pixel-
wise operation of flat-field correction can be represented using
Eq. 3:

C(x, y) =
R(x, y)−D(x, y)

F (x, y)−D(x, y)
(3)

where:
(x, y) = Position of an arbitrary pixel
C = Corrected image
R = Demosaiced image
D = Dark image
F = Flat-field image

Fig. 3: Calibration target

Fig. 4: Image processing pipeline

3) Optical distortion removal: The camera’s intrinsic pa-
rameters (focal length, principal point, skew, radial, and tan-
gential distortion coefficients) are estimated using Bouguet’s
toolbox [12]. The estimated distortion model is then applied
on the images to remove optical distortions.

4) Perspective bias correction: In practical settings, it is
not possible to position the camera completely parallel to the
surface normal. The effect of perspective bias is especially
pronounced when the image acquisition distance is small. A
checkerboard reference pattern is used to calculate homogra-
phy (transformation function) that registers the image captured
by the camera to a plane perfectly parallel to the object table.

C. Color Calibration and Correction

The image of calibration target is first processed through
the pipeline described in Section III-B. The RGB values of all
928 patches along with the corresponding spectrally measured
values are extracted to create the calibration dataset. The
convex hull of the 928 data points in RGB space is shown
in Fig. 5.

The color mapping algorithms described in Section II were
tested to find the most suitable one for our application. In
addition to the methods existing in previous literature, another
novel mapping algorithm based on direct relationship between
RGB and CIELAB color space was tested. Instead of mapping
RGB values to XYZ then converting the values in their corre-
sponding CIELAB values, we can directly map a relationship

Fig. 5: Convex hull of calibration dataset



between RGB and Lab. The transformation between XYZ and
CIELAB can be represented by the following equation:

L∗ =116(Y/Yn)1/3 − 16

a∗ =500
{

(X/Xn)1/3 − (Y/Yn)1/3
}

b∗ =200
{

(Y/Yn)1/3 − (Z/Zn)1/3
} (4)

where:[
L∗, a∗, b∗

]
= Transformed coordinates in CIELAB

color space[
X,Y, Z

]
= Input coordinates in CIEXYZ color space[

Xn, Yn, Zn

]
= Coordinates of white point in CIEXYZ

color space

It can be noted from Eq. 4 that the relationship between
the two CIE color spaces is a cube-root function [1]. We
have previously established in Section II that XYZ and RGB
color spaces are approximately linearly related (Fig. 1). If
we roughly consider RGB color space analogous to XYZ
color space, it can be deduced that the transformation between
RGB and CIELAB can also be a cube-root function. To
estimate the mapping via LSA method, we first transformed
the RGB values to their corresponding functions of cube-root
and then solved the closed-form least square equation. For
cube-root polynomial LSA, the parameters of matrix X in Eq. 1
are ( 3

√
R, 3
√
G, 3
√
B), while matrix Y has the corresponding

L*a*b* values from the calibration dataset.
For the HPCC method, testing was done with a different

number of hue plane segments. The best results were obtained
when the data points were divided in 9 segments. Further
increasing the number of unique hues resulted in decreased
accuracy in color correction due to over-fitting.

Two lookup tables (LUTs), one based on absolute RGB to
XYZ transformation (LUT 3D), and the other based on relative
rg chromaticity to XYZ transformation (LUT 2.5D), were
generated. The LUT grid was initialized for each possible RGB
value [0, 255] (16.78 million) combinations. However, since
our gamut is bounded by the colors of real-world surfaces, it

Fig. 6: Expanded gamut for LUT (blue dots)

can be reduced. To reduce the gamut, we expanded our training
gamut (Fig. 5) to include the points which are within 20 units
(RGB space) distance from the convex hull. The expanded
grid for the LUTs consisted of ∼4 million points (Fig. 6).

In LUT methods, cubic, tetrahedral or non-linear interpola-
tion is performed to calculate the corresponding XYZ values
for the RGB grid. This requires that the ground truth/measured
values be placed at a regular interval in the grid [9]. Since, in
our application, it is not possible to have the ground truth data
points (928 data points extracted from the calibration target) to
be positioned equidistant across the LUT, interpolation tech-
niques can not be used. The XYZ values of the corresponding
grid points in Fig. 6 were calculated by linear LSA method
using n nearest calibration data points. n value of 30 is found
to be suitable for our application.

For color correction, images pass through the same image
processing pipeline (Fig. 4). Afterwards, the chosen color
transformation among the aforementioned methods is applied.
When using LUTs, the out-of-gamut colors are mapped via
absolute gamut mapping i.e., the closest point on the LUT
gamut is selected.

D. Evaluation

Three different targets (shown in Fig. 7) were selected to
evaluate the accuracy of color correction:

1) IT8/7.4 CMYK chart (1,620 colors)
2) IT8/7.3 CMYK chart page 1 (468 colors)
3) IT8/7.3 CMYK chart page 2 (460 colors)
A total of 2,548 colors were used for evaluation. It should

be noted here that although the test charts 2 and 3 are
the two-paged version of the calibration target described in
Section III-A, they are printed and measured independently
of the calibration/training chart. The results were evaluated
in terms of color difference (CIE ∆E00) values between
the calibrated camera colorimetric values and the ground
truth values measured spectrally. We used the mean color
difference to evaluate the accuracy of the calibration algorithm.
However, in some cases the mean could be skewed due to few

(a) (b) (c)

Fig. 7: (a) Test chart 1 (b) Test chart 2 (c) Test chart 3



abnormally high color difference values. To get a better idea of
the results, we also looked at the median values of the color
differences to see the general trend of the color difference
while testing. The maximum color difference is also a good
measure to check if some of the colors have an abnormally
large color difference value.

In addition to mean, median, and max, it is useful to look
at the percentage of samples that fall below certain color
difference thresholds. In printing industry, a color difference
of less than 2 is considered ideal and is almost imperceptible
by the human eye. However, it is quite difficult to achieve,
and a color difference of less than 5 is considered acceptable
[13]. We have calculated the percentile rank of samples that
fall below these threshold values to evaluate the quality of the
tested calibration algorithms.

IV. RESULTS

For each of the mapping algorithms described in Section
III-C, the predicted values were compared with the measured
ground truth data. In TABLE I, the results for all 2,548
color patches are summarized quantitatively through mean,
median, maximum of the color differences, and the percentile
rank of data points with color differences less than 2 and 5
respectively.

Based on the results in TABLE I, we can infer that the 3D
LUT method provides the best result based on the lowest mean
color difference and highest percentage of color patches with
both color difference less than 2 and 5. The results from HPCC
and LUT 2.5D methods are quite similar which is logical since
both of them are based on establishing relationship between rg
chromaticity values and the corresponding XYZ values. Test
charts 2 and 3 before and after color correction by LUT 3D
method are shown in Fig. 8.

An interesting observation was made when the color charts
used for evaluation (mentioned in Section III-D) were analyzed
separately. The results of individual test chart evaluation for
the two methods which performed the best (LUT 3D, LUT
2.5D) are presented in TABLE II. Test chart 1 performed better
with LUT 3D as compared to LUT 2.5D with lower mean,
median, and maximum color difference values and higher
percentile rank for both the color difference thresholds. Test
chart 2 performed well for both LUT 3D and 2.5D but its
performance with LUT 3D is exceptionally good with 96% of
the total colors with color difference less than 5 units. Test

(a) (b)

(c) (d)

Fig. 8: (a) Test chart 2 before color correction (b) Test chart 2
after color correction (c) Test chart 3 before color correction
(d) Test chart 3 after color correction

chart 3 performed better with LUT 2.5D as compared to LUT
3D.

It should be noted that test chart 2 has predominantly
lighter and high chromaticity colors while test chart 3 has
predominantly darker low chroma colors. The average L*
value for test charts 1, 2, and 3 was calculated to be 48, 60, and
40 respectively. Considering results from test charts 2 and 3,
we can say that the performance of LUT 3D is better suited for
colors with higher lightness values and LUT 2.5D performs
well for darker low chromatic colors. The chromaticities of

TABLE I: Overall results

Method Mean (∆E00) Median (∆E00) Percentile Rank
(∆E00 ≤ 2)

Percentile Rank
(∆E00 ≤ 5) Max (∆E00)

Linear LSA 4.3 3.46 20.92 68.01 16.76
Polynomial 2nd degree LSA 3.23 2.83 29.71 84.03 17.76
Root polynomial 2nd degree LSA 3.67 2.9 29.43 77.59 18.66
Cube root polynomial LSA 3.7 2.86 30.71 82.86 17.53
HPCC (9 hue segments) 3.38 2.63 31.95 81.67 18.08
LUT 3D 3.07 2.72 32.06 86.62 17.77
LUT 2.5D 3.43 2.76 30.14 81.5 18.05



TABLE II: Individual test chart results

Test chart Method Mean (∆E00) Median (∆E00) Percentile Rank
(∆E00 ≤ 2)

Percentile Rank
(∆E00 ≤ 5) Max (∆E00)

Test chart 1 LUT 3D 3.24 2.86 24.32 86.73 16.06
LUT 2.5D 3.87 3.19 21.79 76.91 18.05

Test chart 2 LUT 3D 1.78 1.37 70.3 96.58 15.02
LUT 2.5D 2.54 1.8 53.63 89.32 13.88

Test chart 3 LUT 3D 3.83 3.6 20.43 76.09 17.78
LUT 2.5D 2.85 2.35 35.65 90 12.92

(a)

(b)

Fig. 9: An example image (a) before and (b) after color
correction

darker colors are more ambiguous and thus a method more
sensitive to slight changes in chromaticity rather than the
absolute values is better suited for correct color prediction
in those regions.

V. CONCLUSION

In this paper, we have presented a complete framework for
acquiring, processing and color correcting images in a non-
laboratory setting. Methods for compensating non-uniformities
and distortions introduced by the environment and equipment
were recommended. Several color calibration and correction
methods were tested and the results were analyzed to identify

the most suitable method for the application. The lookup
table based methods were found to be the most accurate.
Lookup based table methods work best with large amount of
ground truth data. Conventional color charts such as Macbeth
ColorChecker can not provide enough training data to form a
well-performing LUT.

In the light of the results presented in Section IV, more
investigation needs to be done regarding the different behavior
of mapping function in lighter and darker regions of the color
gamut. A hybrid lookup table combining the better performing
aspects of 3D and 2.5D LUTs could be a good solution to
perform more robust and accurate color correction.
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